Этапы репродукции вируса гриппа

Этапы репродукции вируса гриппа

Грипп

Вирус — доклеточная форма живой материи.

Отсутствием клеточной стенки

Наличием одной нуклеиновой кислоты (РНК либо ДНК)

Абсолютный паразит (эндоцитобионт)

Часто, осложнение в виде оппортунистических процессов

Реакция крови в виде лейкопении, вторичный иммунодефицит

Нечувствительность к антибактериальной терапии.

ГРИПП (Cемейство Ortomyxoviridae)

Острая вирусная респираторная инфекция.

Периодически распространяется в виде эпидемий и пандемий. Историческая справка:

первая пандемия «Испанка», в 1818-1820 годах прошлого столетия тип А подтип Н1N1.

Вторая 1957-1960 годы,»азиатский» выделен в Сингапуре. тип А подтип Н2N2

Третья 1968-1970г «гонконгский» тип А подтип Н3N2

Характеризуется явлениями общей интоксикации, лихорадкой, поражением ВДП, нервной и сердечно-сосудистой систем.

Строение вириона вируса гриппа типа А

Он имеет сферическую форму , размер 80-120 нанометров.

Сложный РНК-содержащий вирус, состоящий из центральной части генома (сердцевины) и суперкапсида.

Геном вируса – спираль, однонитчтая, фрагментированная минус-РНК, состоящая из 8 сегментов, которые кодируют 10 вирусных белков. Фрагменты РНК имеют общую белковую оболочку, которая объединяет их, образуя рибонуклеопротеид (RNP).

Вокруг RNP находится слой матриксного белка (М-слой), придающий вириону прочность.

Поверх М-слоя, прилегая к нему, расположен суперкапсид – липопротеиновая оболочка клеточного происхождения со встроенными вирусоспецифическими гликопротеинами гемагглютинином (Н), названным по способности агглютинировать эритроциты, и нейраминидазой (N), фермент, выступающими над поверхностью вириона в виде множества шипиков.

Гемагглютинин обеспечивает способность вируса присоединяться к клетке. Нейраминидаза отвечает, во-первых, за способность вирусной частицы проникать в клетку-хозяина, и, во-вторых, за способность вирусных частиц выходить из клетки после размножения.

Нуклеопротеид (также называемый S-антигеном) постоянен по своей структуре и определяет тип вируса (А, В или С). Поверхностные антигены (гемагглютинин и нейраминидаза V-антигены), напротив, изменчивы и определяют разные штаммы одного типа вируса.

Антигены вируса гриппа

Внутренние антигены (S- антиген) – это антигены белков нуклеокапсида и матриксного белка (NP-белком и М-белком) типоспецифические антигены Отличаются стабильностью, являются типоспецифичными, и не дают перекрестных реакций.

NP- белок связывает Со и определяется РСК

Поверхностные антигены (V-антигены) – являются протективными антигенами – это антигены поверхностных гликопротеинов – гемааглютинина (H-антиген) и нейраминидазы (N-антиген). АНТ к этим АНГ обладают вируснейтрализующим свойством. Исследуют в РТГА (АНГв+Эр+АНТв).

Поверхностные АНГ отличаются многообразием и изменчивостью ( 15 вариантов H-антигенов, 10 N-антигенов). Для вируса гриппа человека характерны гемагглютинины H1, H2, H3 и нейраминидазы N1 и N2. Различные варианты сочетания H- и N-антигенов определяют подтипы вируса типа А, напр. A/H1N1/, A/H2N2/ и A/H3N2.

Антигенная изменчивость обуславливается 2 процессами:

Дрейф антигенов — незначительные изменения в структуре H-N-антигенов за счет точечных мутаций в генах, которые их кодируют. В результате образуются измененные сероварианты (штаммы) того же подтипа.

Шифт антигенов – полное замещение участка генома, кодирующего синтез H– и N-антигенов , приводящее к образованию нового подтипа вируса гриппа.

Эпидемиология

Механизм передачи – аэрогенный

Путь передачи – воздушно-капельный

Интенсивная репродукция вирусов происходит в ВДП, поэтому короткий инкубационный период – от нескольких часов до 2-х дней

Способность к антигенной изменчивости — дрейфу и шифту.

Эпидемическое распространение заболевания – повсеместно.

Пик заболеваемости нарастает в осенне-зимний период

Репродукция вируса гриппа

Адсорбция вирусов на чувствительных клетках

Проникновение вирионов в клетку

Транспортировка вируса к ядру клетки и дальнейшая депротеинизация

Экспрессия вирусного генома и синтез компонентов вириона

Формирование вирионов и их выход из клетки

Цикл репродукции вируса гриппа продолжается 6-8 часов. Зараженная клетка погибает не сразу и может продуцировать несколько тысяч вирионов.

Вирус гриппа избирательно поражает эпителий респираторного тракта (преимущественно трахеи). Размножаясь в клетках цилиндрического эпителия, вызывает их дегенеративные изменения, используя содержимое эпителиальных клеток для построения новых вирусных частиц. Массированный выход зрелых вирусных частиц нередко сопровождается гибелью эпителиальных клеток, а некроз эпителия и связанное с этим разрушение естественного защитного барьера приводит к вирусемии. Токсины вируса гриппа вместе с продуктами распада эпителиальных клеток оказывают токсическое действие на сердечно-сосудистую, нервную (центральную и вегетативную) и другие системы организма. Гриппозная инфекция приводит к подавлению иммунитета, а при внедрении вторичной бактериальной флоры через некротизированную поверхность слизистой оболочки дыхательных путей могут возникнуть различные осложнения.

В патогенезе гриппа выделяют пять основных фаз патологического процесса:

репродукция вируса в клетках дыхательных путей;

вирусемия, токсические и токсико-аллергические реакции;

поражение дыхательных путей с преимущественной локализацией процесса в каком-либо отделе дыхательного тракта;

возможные бактериальные осложнения со стороны дыхательных путей и других систем организма;

обратное развитие патологического процесса.

В основе поражения различных органов и систем при гриппе ведущую роль играют циркуляторные расстройства, причиной которых являются нарушения тонуса, эластичности и проницаемости сосудистой стенки, прежде всего капилляров. Повышение проницаемости сосудистой стенки приводит к нарушению микроциркуляции и возникновению геморрагического синдрома (носовые кровотечения, кровохарканья, а при тяжелом течении — кровоизлияния в вещество и оболочки головного мозга, в альвеолы, что проявляется синдромом инфекционно-токсической энцефалопатии или геморрагическим токсическим отеком легких).

Грипп обусловливает снижение иммунологической реактивности. Это приводит к обострению различных хронических заболеваний, а также к возникновению вторичных бактериальных осложнений. Наиболее частое и серьезное осложнение гриппа — острая пневмония. В настоящее время общепризнано, что пневмония при гриппе носит смешанный вирусно-бактериальный характер вне зависимости от сроков ее возникновения.

Клинические формы гриппа

Крайне тяжелая (гипертоксическая) степень

Крайне тяжелая (гипертоксическая) степень

Постоянно действующие факторы неспецифической защиты (клеточные и гуморальные): выделительная функция организма, сывороточные ингибиторы, альфа-интерферон, секреторные IgA.

Факторы индуцированные вирусом (неспецифические — повышение Т тела, и специфические)

Стойкий постинфекционный клеточный и гуморальный иммунитет, который отличается своей узкой типо-, подтипо-, варианто специфичностью и направлен против сероварианта (штамма) вируса гриппа, вызвавшего определенное заболевание.

Поэтому противогриппозный иммунитет является подтипо- и штаммоспецифичным.

Микробиологическая диагностика базируется:

Выделение и идентификация вируса

Определение вирусных АНГ в клетках больного

Поиск вирусоспецифических АНТ в сыворотке больного.

Материал для исследования: носоглоточное отделяемое, мазки – отпечатки со слизистой носа, постмортальное исследование аутопсий

Лабораторная диагностика гриппа – раннюю и ретроспективную – проводят для подтверждения клинического диагноза, дифференциации гриппа от ОРВИ другой этиологии и для эпидемиологических целей.

Ранняя диагностика: в первые 3 дня и не позднее 5-го дня болезни обнаруживают АНГ вирусов гриппа с помощью экспресс методов Исследуемый материал : слизь из носовых ходов и носоглотки, взятая тампонами, путем смывов, методом мазков-отпечатков со слизистой нижних носовых раковин, а также секционный материал после их специальной обработки.

Экспресс-диагностика: 2-5 часов, чаще РИФ (прямой и непрямой). Специфические АНГ вируса гриппа и внутриклеточные включения выявляют по их яркому изумрудно-зеленому свечению в участках цитоплазмы и ядра инфицированных эпителиальных клеток.

Вирусологический метод

Выделение вируса на куриных эмбрионах:

Проводят комбинированное заражение исследуемым материалом 10-11 дневных эмбрионов в амниотическую и аллантоисную полости. После 3 дней инкубации при t 35С проверяют присутствие вирусов в амниотической и аллантоисной жидкости с помощью РГА с эритроцитами кур, морской свинки или человека, устанавливают титр вируса.

Далее проводится серологическая идентификация выделенного вируса с помощью РСК для определения типовой принадлежности вируса (А, В или С) и РТГА для установления подтипа или штамма вируса гриппа. Реакции ставят с соответствующими диагностическими сыворотками.

Выделение вирусов в культурах клеток

Осуществляется путем заражения нескольких типов культур клеток, чаще используются первичные культуры почек человека и некоторых животных. Клеточные культуры инкубируют в течение недели при Т-33С , ежедневно регистрируя изменения монослоя клеток с целью выявления ЦПД (РТГА, РГА, ИФ-метод). Далее вируссодержащей культуральной жидкостью заражают куриные эмбрионы, получают алантоисную жидкость с высоким содержанием вирусов, и проводят идентификацию выделенного вируса.

Ретроспективная диагностика гриппа (серологическое исследование)

Серологическое исследование парных сывороток, взятых в начале заболевания и через 7-14 дней. Повышение титра специфических АНТ в течение заболевание не менее, чем в 4 раза (у детей младшего возраста – в 2 раза) позволяют установить точную этиологию гриппа.

Цельновирусные вакцины (1-го поколения) – инактивированные и живые.

Расщепленные – сплит вакцины (2-го поколения), содержат внутренние и наружные АНГ вирусов гриппа и не содержат липидов, удаленных после обработки вирионов растворителями или детергентами.

Субъединичные вакцины (3-го поколения) являются наиболее очищенными, содержат наружные H- и N-антигены вирусов гриппа

Ее проводят во время эпидемического подъема заболеваемости. Различают плановую профилактику, организуемую в детских учреждениях, рабочих коллективах и очаговую в семьях гриппозных больных. Для экстренной профилактики применяют противовирусные препараты, иногда проводят иммуноглобулинпрофилактику.

Для лечения гриппа применяют противовирусные препараты:

Препарата интерферона (вирус гриппа А + антитоксическое действие при гриппе В)

Ремантадин (вирус гриппа А +В) ингибирует синтез М-белка, что приводит к нарушению цикла репродукции и препятствует формированию полноценных вирионов.

Арбидол и амиксин, являются индукторами интерферонов и иммуномодуляторами, которые воздействуют на все типы вирусоа гриппа

При тяжелых формах гриппа в первые 3 дня болезни показано введение противогриппозного иммуноглобулина.

Симптоматическое лечение. При наличии бактериальных осложнений назначают антибиотики и сульфаниламиды.

источник

Репродукция вирусов: стадии, особенности, этапы развития и циклы

Размножение вирусов не осуществляется бинарным делением. Еще в 50-х годах прошлого века было установлено, что размножение осуществляется методом репродукции (в переводе с англ. reproduce – делать копию, воспроизводить), то есть путем воспроизведения нуклеиновых кислот, а также синтеза белка с последующим сбором вирионов. Данные процессы происходят в различных частях клетки так называемого хозяина (к примеру, в ядре или цитоплазме). Данный разобщенный метод репродукции вирусов называется дизъюнктивным. Именно на этом мы и остановимся подробнее в нашей статье.

Процесс репродукции

Данный процесс имеет свои особенности репродукции вирусов и отличается последовательной сменой некоторых стадий. Рассмотрим их по отдельности.

Вирусы не могут размножаться в питательной среде, так как они представляют собой строгие внутриклеточные паразиты. Кроме того, в отличие от хламидий или риккетсий, во время репродукции вирусы в клетке хозяина не способны расти и не размножаются методом деления. Все составные части данного вируса включают в себя нуклеиновые кислоты, а также белковые молекулы, которые синтезируются в «хозяйской» клетке раздельно, в различных частях клетки: в цитоплазме и в ядре. Помимо этого, белоксинтезирующие клеточные системы подчиняются одному вирусному геному, а также его НК.

Вирусная репродукция в клетке осуществляется в несколько фаз, которые описаны ниже:

  1. Первая фаза представляет собой адсорбцию вируса, о которой речь шла выше, на поверхности клетки, которая является чувствительной к этому вирусу.
  2. Вторая представляет собой проникновение вируса в клетки хозяина методом виропексиса.
  3. Третья — это некое «раздевание» вирионов, высвобождение нуклеиновой кислоты от капсида и суперкапсида. У ряда вирусов попадание нуклеиновой кислоты в клетки происходит методом слияния вирионной оболочки и клетки-хозяина. В данном случае третья и вторая фазы объединяются в единую.

Адсорбция

Под этой стадией репродукции вирусов подразумевается проникновение вирусной частицы в клетки. Адсорбция начинается на клеточной поверхности при помощи взаимодействия клеточных, а также вирусных рецепторов. В переводе с латинского слово «рецепторы» означает «принимающий». Они представляют собой специальные чувствительные образования, которые воспринимают раздражения. Рецепторы — это молекулы либо молекулярные комплексы, расположенные на поверхности клеток, а также способны распознавать химические специфические группировки, молекулы либо другие клетки, связывать их. У наиболее сложных вирионов такие рецепторы располагаются с внешней оболочки в виде шиповидного выроста или ворсинки, у простых вирионов они находятся, как правило, на поверхности капсида.

Механизм адсорбции на поверхности восприимчивой клетки основывается на взаимодействии рецепторов с так называемыми комплементарными рецепторами «хозяйской» клетки. Рецепторы вириона и клетки являются некими специфическими структурами, которые расположены на поверхности.

Аденовирусы и миксовирусы адсорбируются непосредственно на мукопротеиновых рецепторах, а арбовирусы и пикорнавирусы ― на липопротеиновых рецепторах.

У вириона миксовирусов нейраминидаза разрушает мукогфотеиновый рецептор и отщепляет N-ацетилнейраминовые кислоты от олигосахарида, который содержит в себе галактозу и галактозамин. Их взаимодействия на данном этапе обратимы, ведь на них значительно влияет температура, реакция среды и солевые компоненты. Адсорбции вириона препятствуют гепарин и сульфатированные полисахариды, несущие при этом отрицательный заряд, однако их ингибирующее воздействие снимается некоторыми поликарионами (экмолин, ДЭАЭ-декстран, протаминсулъфат), нейтрализующие отрицательный заряд от сульфатированных полисахаридов.

Попадание вириона в «хозяйскую» клетку

Путь внедрения вируса в чувствительную к нему клетку не всегда будет одним и тем же. Многие вирионы способны проникать в клетки методом пиноцитоза, что в переводе с греческого означает «пить», «выпивать». При данном методе пиноцитозная вакуоль будто бы втягивает вирион непосредственно внутрь клетки. Остальные вирионы могут проникать в клетку напрямую сквозь ее оболочку.

Контакт фермента нейраминидаза с клеточными мукопротеидами способствует попаданию вирионов в клетку среди миксовирусов. Результаты исследований последних лет доказывают, что ДНК и РНК вирионов от внешней оболочки не отделяются, т. е. вирионы проникают целиком в чувствительные клетки путем пиноцитоза или виропексиса. На настоящий момент это подтверждено в отношении вируса оспы, осповакцины, а также других вирусов, выбирающих средой обитания организм животных. Если говорить о фагах, они заражают нуклеиновой кислотой клетки. Механизм заражения основывается на том, что те вирионы, которые содержатся в вакуолях клеток, гидролизуются ферментами (липаз, протеаз), в процессе чего от оболочки фага освобождается ДНК и попадает в клетку.

Для проведения эксперимента выполнялось заражение клетки с помощью нуклеиновой кислоты, которая была выделена от некоторых вирусов, и вызывается один полный цикл репродукции вирионов. Однако в естественных условиях инфицирования при помощи такой кислоты не происходит.

Дезинтеграция

Следующий этап репродукции вирусов – дезинтеграция, которая представляет собой освобождение НК от капсида и внешней оболочки. После попадания вириона в клетки, капсид переживает некоторые изменения, приобретая чувствительность к клеточному протеазу, затем он разрушается, параллельно освобождая НК. У отдельных бактериофагов в клетки попадает свободная НК. Фитопатогенный вирус проникает через повреждение в клеточной стенке, а затем он адсорбируется на внутреннем клеточном рецепторе с одновременным высвобождением НК.

Репликация РНК и синтез вирусного белка

Следующим этапом репродукции вирусов является синтез вирусоспецифичного белка, который происходит с участием так называемых информационных РНК (у отдельных вирусов они находятся в составе вирионов, а у некоторых синтезируются только в зараженных клетках непосредственно на матрице вирионной ДНК или РНК). Происходит репликация вирусной НК.

Процесс репродукция РНК-вирусов начинается после попадания нуклеопротеидов в клетку, где формируются вирусные полисомы методом комплексирования РНК с рибосомами. После этого синтезируются и ранние белки, куда следует отнести репрессоры из клеточного метаболизма, а также РНК-полимеразы, которые транслируются с родительской молекулой РНК. В цитоплазме наиболее мелких вирусов, либо в ядре, образуется вирусная двунитчатая РНК методом комплексирования родительской плюс-цепи («+» — РНК-цепь) с опять синтезированной, а также комплементарной с ней минус-цепи («-» — РНК-цепи). Соединение данных нитей из нуклеиновой кислоты провоцирует образование лишь однонитчатой структуры РНК, которая называется репликативной формой. Синтезы вирусной РНК осуществляются репликативными комплексами, в которых принимают участие репликативная форма РНК, фермент РНК-полимеразы, полисомы.

Существует 2 вида РНК-полимераз. К таковым относятся: РНК-полимераза I, которая катализирует формирование репликативной формы непосредственно на матрице плюс-цепи, а также РНК-полимераза II, которая принимает участие в синтезе однонитчатой вирусной РНК на матрице репликативного типа. Синтез нуклеиновых кислот у мелких вирусов происходит в цитоплазме. Что касается вируса гриппа, то в ядре синтезируется внутренний белок и РНК. РНК выделяется затем из ядра и проникает в цитоплазму, в которой совместно с рибосомами начинает синтезировать вирусный белок.

После попадания вирионов в клетки, в них подавляется синтез нуклеиновой кислоты, а также клеточных белков. При репродукции вирусов, ДНК содержащих, на матрице в ядре синтезируется еще и-РНК, которая несет в себе информацию для синтеза белка. Механизм синтеза вирусного белка осуществляется на уровне клеточной рибосомы, а источником построения будет аминокислотный фонд. Активизация аминокислот осуществляется ферментами, при помощи и-РНК переносятся непосредственно в рибосомы (полисомы), в которых они располагаются уже в синтезированной молекуле белков.

Таким образом, в зараженных клетках синтез нуклеиновых кислот и белков вириона осуществляется в составе репликативно-транскриптивного сложного комплекса, который регулируется некой системой механизма.

Морфогенез вириона

Образование вирионов может произойти только в случае строго упорядоченного соединения структурных вирусных полипептидов, а также их НК. А это обеспечивается так называемой самосборкой молекул белка около НК.

Формирование вириона

Формирование вириона происходит с участием некоторых структурных компонентов, входящих в состав клетки. Вирусы герпеса, полиомиелита и осповакцины образуются в цитоплазме, а аденовирусы ― в ядре. Синтез вирусной РНК, а также формирование нуклеокапсида происходит непосредственно в ядре, а гемагглютинин формируется в цитоплазме. После этого нуклеокапсид перебирается из ядра в цитоплазму, в которой осуществляется образование оболочки вириона. Нуклеокапсид покрывается снаружи вирусными белками, а в состав вириона при этом включаются гемагглютинины и нейраминидазы. Именно таким образом происходит образование потомства, например, вируса гриппа.

Высвобождение вириона из «хозяйской» клетки

Из «хозяйской» клетки частицы вируса выделяются одновременно (во время разрушения клеток) либо постепенно (без каких-либо разрушений клеток).

Именно в таком виде и происходит репродукция вирусов. Вирионы высвобождаются из клеток, как правило, двумя способами.

Первый метод

Первый способ подразумевает следующее: после абсолютного созревания вирионов непосредственно внутри клетки они округляются, там образуются вакуоли, а затем разрушается и клеточная оболочка. По завершению этих процессов вирионы выходят все одновременно и полностью из клеток (пикорнавирусы). Данный способ принято называть литическим.

Второй метод

Второй способ подразумевает процесс освобождения вирионов по мере их созревания в течение 2―6 часов на цитоплазматической мембране (миксовирусы и арбовирусы). Выделению из клетки миксовирусов способствует нейраминидазы, разрушающие клеточную оболочку. Во время этого способа 75-90 % вирионов выходят спонтанно в культуральную среду, а клетки постепенно погибают.

источник

21. Репродукция вирусов. Основные фазы репродукции вирусов. Методы индикации вирусов в исследуемом материале.

Вирусы не способны размножаться на питательных средах — это строгие внутриклеточные паразиты. Более того, в отличие от риккетсий и хламидий, вирусы в клетке хозяина не растут и не размножаются путем деления. Составные части вируса — нуклеиновые кислоты и белковые молекулы синтезируются в клетке хозяина раздельно, в разных частях клетки — в ядре и в цитоплазме. При этом клеточные белоксинтезирующие системы подчиняются вирусному геному, его НК.

Репродукция вируса в клетке происходит в несколько фаз:

Первая фаза — адсорбция вируса на поверхности клетки, чувствительной к данному вирусу.

Вторая фаза — проникновение вируса в клетку хозяина путем виропексиса.

Третья фаза — «раздевание» вирионов, освобождение нуклеиновой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем слияния оболочки вириона и клетки-хозяина. В этом случае вторая и третья фазы объединяются в одну.

В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.

ДНК-содержащие (ДНК —> иРНК —>белок):

Репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК — полимеразу клетки.

Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу.

Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

Рибовирусы с негативным геномом (минус- нитевые): грипп, корь, паротит, орто-, парамиксовирусы.

(-)РНК —> иРНК —> белок (иРНК комплементарная (-)РНК). Этот процесс идет при участии специального вирусного фермента — вирионная РНК-зависимая PHK-полимераза ( в клетке такого фермента быть не может).

(-)РНК -> ДНК —> иРНК —>белок (и РНК гомологична РНК). В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента — РНК-зависимой ДНК-полимеразы (обратной транскриптазы или ревертазы)

Четвертая фаза — синтез компонентов вириона. Нуклеиновая кислота вируса образуется путем репликации. На рибосомы клетки транслируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

Пятая фаза — сборка вириона. Путем самосборки образуются нуклеокапсиды.

Шестая фаза — выход вирионов из клетки. Простые вирусы, например, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Иной путь — интегративный — заключается в том, что после проникновения вируса в клетку и «раздевания» вирусная нуклеиновая кислота интегрирует в клеточный геном, то есть встраивается в определенном месте в хромосому клетки и затем в виде так называемого прови-руса реплицируется вместе с ней. Для ДНК- и РНК-содержащих вирусов этот процесс совершается по-разному. В первом случае вирусная ДНК интегрирует в клеточный геном. В случае РНК-содержащих вирусов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента «обратной транскриптазы» образуется ДНК, которая встраивается в клеточный геном. Провирус несет дополнительную генетическую информацию, поэтому клетка приобретает новые свойства. Вирусы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся некоторые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус иммунодефицита человека, умеренные бактериофаги.

Кроме обычных вирусов, существуют прионы — белковые инфекционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

Методы индикации вирусов в исследуемом материале.

О репродукции вирусов в культурах клеток судят по их цитопатическому действию (ЦПД), которое носит разный характер в зависимости от вида вируса, по бляшкообра- манию на клеточном монослое, покрытом тонким агаровым слоем, гемадсорбции эритроцитов и другим тестам.

Таким образом, индикация вирусов производится микроскопически по наличию ЦПД, бляшкообразованию на клеточном монослое, гемадсорбции эритроцитов, добавленных к клеточной культуре вируса, а также в реакции гемагглютинации с исследуемым вируссодержащим материалом. Реакцию гемагглютинации вызывают вирусы, содержащие в составе своего капсида или суперкапсида гемагглютинин.

источник

репродукция вирусов гриппа и гепатита В

После проникновения в клетку сердцевины вируса неполная нить ДНК – генома достраивается.

Формируется полная двунитевая ДНК и

созревающий геном попадает в ядро клетки.

В ядре клеточная ДНК-зависимая РНК – полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК – прегеном – матрицу для репликации генома вируса.

Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома.

На матрице пре-генома синтезируется минус- нить ДНК с помощью РНК – зависимой ДНК – полимеразы вируса.

6) На образовавшейся минус- нити ДНК синтезируется плюс- нить ДНК.

7) На Hbs – содержащих мембранах эндоплазматической сети или аппарата Гольджи формируется оболочка вируса.

Вирион выходит из клетки эндоцитозом.

Схема репродукции вируса гриппа.

1. Адсорбция вируса к клеточной поверхности с помощью специфических рецепторов.

Один из поверхностных белков (белок слияния) взаимодействует с липидным бислоем клетки, в результате липидные бислои вируса и клетки сливаются в общую мембрану.

Содержимое вириона переходит внутрь клетки, а оболочка вириона остается на поверхности клетки.

3. раздевание вирусной частицы в эндосоме и выход вирусной RNA (генома) в цитоплазму.

4. Транспорт (-) цепи RNA вирусного генома в ядро клетки, где она реплицируется и копируется с помощью вирусных ферментов

в (+) цепь RNA, которая является информационной RNA и служит матрицей для образования большего числа (-)RNA.

(+) цепь RNA транспортируется в цитоплазму, чтобы транслироваться в ранние и поздние вирусные белки.

5. Вирусные core (ядерные) белки транспортируются обратно в ядро, чтобы сформировать капсид вокруг вирусной (-)RNA, формируя «рибонуклеиновую сердцевину» или геномсодержащий нуклеокапсид вируса.

Вирусные оболочечные белки самовстариваются в клеточную ЦПМ.

источник

Репродукция вирусов

Для вирусов характерен дизъюнктивный (от disjuncus — разобщенный) способ репродукции-размножения. Потомство вируса возникает в результате сборки нуклеиновых кислот и белковых субъединиц, которые синтезируются раздельно клеткой хозяина.

Проникновение вируса в клетку и воспроизведение себе подобных проходит в несколько фаз:

1.проникновение в клетку хозяина,

2.синтез ферментов, необходимых для репликации вирусных нуклеиновых кислот,

4.сборка и композиция зрелых вирионов,

5.выход зрелых вирионов из клетки.

Стадии репродукции вирусов.

1 — адсорбция вириона на клетке; 2 — проникновение вириона в клетку путем виропексиса;

3 — вирус внутри вакуоли клетки; 4 — `раздевание вириона вируса; 5 — репликация вирусной нуклеиновой кислоты; 6 — синтез вирусных белков на рибосомах клетки; 7 — формирование вириона; 8 — выход вириона из клетки путем почкования.

Фаза Iадсорбция вириона на поверхности клетки.

Протекает в две стадии: первая — неспецифическая, когда вирус удерживается на поверхности клетки при помощи электростатических сил, т. е. благодаря возникновению противоположных зарядов между отдельными участками мембраны клеток и вируса. Эта фаза взаимодействия вируса с клеткой обратима, на нее оказывают влияние такие факторы, как рН и солевой состав среды.

Вторая стадия — специфическая, когда взаимодействуют специфические рецепторы вируса и рецепторы клетки, комплементарные друг другу. По химической природе рецепторы клетки могут быть мукопротеидами (или мукополисахаридами) и липопротеидами. Разные вирусы фиксируются на разных рецепторах: вирусы гриппа, парагриппа, аденовирусы — на мукопротеидах, а вирусы клещевого энцефалита, полиомиелита — на липопротеидах.

Фаза IIпроникновение вируса в клетку. Электроноскопические наблюдения за процессом проникновения вирусов в чувствительные к ним клетки показали, что оно осуществляется посредством механизма, напоминающего пиноцитоз, или, как чаще называют, виропексис. В месте адсорбции вируса клеточная стенка втягивается внутрь клетки, образуется вакуоль, в которой оказывается вирион. Параллельно клеточные ферменты (липазы и протеазы) вызывают депротеинизацию вириона — растворение белковой оболочки и освобождение нуклеиновой кислоты.

Фаза IIIскрытый период (период эклипса — исчезновения). В этот период в клетке невозможно определить наличие инфекционного вируса ни химическими, ни электронно-микроскопическими, ни серологическими методами. О сущности этого явления и его механизмов пока известно мало. Предполагается, что в скрытой фазе нуклеиновая кислота вируса проникает в хромосомы клетки и вступает с ними в сложные генетические взаимоотношения.

Фаза IVсинтез компонентов вириона. В этой фазе вирус и клетка представляют единое целое, вирусная нуклеиновая кислота выполняет генетическую функцию, индуцирует образование ранних белков и изменяет функцию рибосом. Ранние белки подразделяются на:

а) белки-ингибиторы (репрессоры), подавляющие метаболизм клеток

б) белки-ферменты (полимеразы), обеспечивающие синтез вирусных нуклеиновых кислот.

Синтез нуклеиновых кислот и белков протекает неодновременно и в разных структурных частях клетки. У вирусов, содержащих ДНК или РНК, эти процессы имеют некоторые различия и особенности.

Фаза Vформирование зрелых вирионов. Процесс «сборки» вируса осуществляется в результате соединения компонентов вирусной частицы. У сложных вирусов в этом процессе принимают участие клеточные структуры и происходит включение в вирусную частицу липидпых, углеводных, белковых компонентов клетки хозяина.

Процесс формирования вирионов начинается спустя определенное время после того, как начал осуществляться синтез составляющих их компонентов. Продолжительность этого периода довольно вариабельна и предопределяется природой вируса — для РНК-содержащих обычно короче, чем для ДНК-вирусов. Например, продукция полных вирусных частиц осповакцины начинается приблизительно спустя 5—6 ч после инфицирования клеток и продолжается в течение последующих 7—8 ч, т. е. после того как синтез вирусной ДНК уже завершен.

Между нуклеиновой кислотой и соответствующим белковыми субъединицами образуются очень прочные связи, о чем свидетельствуют трудности отделения белка от вирусной нуклеиновой кислоты. Большую прочность вирусной частице придают входящие в ее состав углеводы и особенно липиды.

Формирование вирионов, так же как и синтез компонентов вируса, происходит в разных местах клетки, при участии различных клеточных структур. После завершения процесса формирования образуется зрелая дочерняя вирусная частица, обладающая всеми свойствами родительского вириона. Но иногда наблюдается образование так называемых неполных вирусов, которые состоят или только из нуклеиновой кислоты, или из белка, или из вирусных частиц, формирование которых остановилось в какой-то промежуточной стадии.

Фаза VIвыход зрелых вирионов из клетки. Существуют два основных механизма выхода зрелых вирионов из клетки:

1) выход вириона с помощью почкования. В этом случае наружная оболочка вириона происходит из клеточной мембраны, она содержит как материал клетки хозяина, так и вирусный материал;

2) выход зрелых вирионов из клетки через бреши в мембране. Эти вирусы не имеют наружной оболочки. При таком механизме выхода вирусов клетка, как правило, погибает и в среде появляется большое количество вирусных частиц.

Причиной гибели зараженной клетки могут быть три механизма:

1.работа вируса, «истощающая» клетку;

2.защитная реакция клетки, запускающая генетическую программу ее гибели (апоптоз);

3. иммунная система организма, уничтожающая зараженную клетку.

Кроме продуктивного типа взаимодействия вируса и клетки возможно интегративное сосуществование или вирогения. Вирогения характеризуется интеграцией (встраиванием) нуклеиновой кислоты вируса в геном клетки, а также репликацией и функционированием вирусного генома как составной части генома клетки. Для интеграции с клеточным геномом необходимо возникновение кольцевой формы двунитевой ДНК вируса. Встроенная в состав хромосомы клетки вирусная ДНК называется провирусом. Провирус реплицируется в составе хромосомы и переходит в геном дочерних клеток, т.е. состояние вирогении наследуется. Под влиянием некоторых физических или химических факторов провирус может переходить в автономное состояние с развитием продуктивного типа взаимодействия с клеткой. Дополнительная генетическая информация провируса при вирогении сообщает клетке новые свойства, что может быть причиной развития опухолей, аутоиммунных и хронических заболеваний. На способности вирусов к интеграции с геномом клетки основаны персистенция (от лат. persisto — постоянно пребывать, оставаться) вирусов в организме и развитие персистентных вирусных инфекций. Например, вирус гепатита В способен вызывать персистирующие поражения с развитием хронического гепатита и часто опухолей печени.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8524 — | 8109 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Понравилась статья? Поделить с друзьями: